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Observed Score and True Score Equating for Multidimensional Item Response Theory under 

Nonequivalent Group Anchor Test Design 

Abstract 

For each MIRT ability vector on a particular test form, it is possible that there are an 

infinite number of ability vectors falling on the equivalent contours of the test characteristic 

surface on a corresponding equated test form. Therefore, using the number-correct score as the 

ability measure makes MIRT equating a viable option. 

In this study, the equating performances for five MIRT linking methods [i.e., the direct 

method (OD), the Test Characteristic Function method (TCF), the Item Characteristic Function 

method (ICF), the Min‟s method (M), and the non-orthogonal Procrustes method (NOP)] and 

three MIRT equating procedures [i.e., the full MIRT observed score equating (MOSE), the 

unidimensional approximation of MIRT true score equating (ATSE), and the unidimensional 

approximation of MIRT observed score equating (AOSE)] are examined. 

Results indicated that the MIRT equating procedures under the TCF, ICF, and OD linking 

methods showed better equating performance as compared with those under the M or NOP 

linking methods. The ATSE procedure demonstrated the best performance as compared with the 

other two equating procedures across all group distribution conditions and all linking methods. 

The MIRT equating procedures under the NOP linking method demonstrated the worst equating 

performance within most of the group distribution conditions. 

In addition, the group ability mean difference factor had the largest negative effect on the 

equating results for all three equating procedures across all linking methods. 
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Observed Score and True Score Equating for Multidimensional Item Response Theory under 

Nonequivalent Group Anchor Test Design 

Introduction 

In large scale assessments, multiple test forms with the common-item nonequivalent 

groups design (NEAT) are widely used to fulfill the test security and fairness requirement. In 

practice, it is nearly impossible to construct multiple forms that are strictly parallel. So, equating, 

a statistical process, is used to adjust scores on different test forms so that scores on the forms are 

comparable (Kolen & Brennan, 2004). Test equating can be categorized as Item Response 

Theory (IRT) equating or non-IRT equating. 

Because the parameter invariance characteristic of IRT offers tremendous flexibility in 

choosing a plan for calibrating and linking test forms, IRT is widely used in educational 

measurement.  

IRT equating is conducted under the IRT framework. In general, there are three basic steps 

in IRT equating if the number-correct score is used as an ability measure. These three steps are 

IRT estimation, IRT linking, and IRT equating (if necessary). IRT estimation is used to estimate 

the item parameters and ability estimates from different models on the data; IRT Linking is used 

to transform the parameter scales from different linking methods under the non-equivalent 

anchor test (NEAT) design and IRT Equating is used to obtain equivalent scores for the different 

test forms from different equating methods. 

Multidimensional item response theory (MIRT) model has been developed in response to 

the need for modeling the relationship between more than one ability or construct, and also the 

complexities of the interaction between persons‟ multiple ability dimensions and items (Reckase, 
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2005). MIRT models are developed and classified into compensatory and partially compensatory 

models.   

MIRT Linking 

Linking or scale aligning is a collection of procedures to put performance or scores on one 

assessment on a common metric with performance or scores on another assessment. MIRT scale 

linking is conducted to adjust (1) rotation, (2) correlation, (3) translation (similar to “origin” in 

UIRT linking), and (4) dilation (similar to “unit of measurement” in UIRT linking). Different 

methods used different approaches to adjust rotation, translation, and dilation for the parameter 

estimated coordinate systems so that the scale indeterminacies are taken into account. Similar to 

unidimensional IRT (UIRT) scale linking, MIRT scale linking is a linear transformation, but the 

transformation is on multiple dimensions. The MIRT scale linking is graphically displayed 

below in Figure 1. 

 

Figure 1. MIRT Linking Components O represents origin, U  represents the unit of measurement 

for Scale L and B . (Adapted from Min, 2003) 
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Several MIRT scale linking methods have been developed (Hirsch, 1989; Li & Lissitz, 

2000; Min, 2003; Oshima, Davey, & Lee, 2000; Reckase & Martineau, 2004; Thompson et al., 

1997) for the NEAT design, including the Li and Lissitz (2000) method (LL method), the Min 

(2003) method (M method), the Oshima, Davey, and Lee (2000) method (i.e. Test Characteristic 

Function or TCF method, Item Characteristic Function or ICF method, Direct Function or OD 

method), and the Non-orthogonal Procrustes (Reckase & Martineau, 2004) method (NOP 

method). 

These MIRT scale linking methods all use the multiple-dimensional compensatory model. 

In these methods, three linking coefficients are estimated including a rotation matrix ( A ) to deal 

with rotation indeterminacy, a translation vector (β ) and a dilation vector ( m ) to deal with 

origin and unit indeterminacy for MIRT scale system (Min, 2003).  

These MIRT linking methods differ in: (1) data collection designs; (2) the theoretical 

foundation to solve rotation indeterminacy (IRT perspective or factor analysis perspective); (3) 

the rotation approach (orthogonal or non-orthogonal); (3) including or not including the dilation 

parameters, and; (4) what kinds of dilation parameter the methods have. Furthermore, different 

methods rely on different mathematical solutions and theoretical perspective to deal with the 

scale indeterminacies. All current existing MIRT scale linking methods cope with scale 

indeterminacy by transforming the scale on the rotation, dilation, and translation, either 

respectively or simultaneously. 

The LL method resolves the three indeterminacy problems separately by using a translation 

vector m , a scalar dilation parameter k , and orthogonal Procrustes rotation matrix T , 

respectively.  The M method improved the LL method by replacing the dilation constant k  in the 

LL method to the diagonal dilation matrix K that allows for differential dilation/contraction of 
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the scales of the various dimensions (Min, 2003). The NOP method applies non-orthogonal 

rotation to correct the weakness in the M method that an infeasible burden of computation exists 

as dimensionality of test is high.  

The TCF method, the ICF method, the OD method, and the NOP method allow using a 

non-orthogonal rotation approach to solve the rotation indeterminacy problem. In contrast, the 

LL method and the M method stick to the orthogonal rotation approach.  

In the TCF method, the ICF method, the OD method, and the NOP method, the dilation 

indeterminacy and rotation indeterminacy are solved simultaneously so that no dilation 

parameters exist in these two methods.  

Symmetry Property and Unidimensionalization 

The symmetry property of equating, proposed by Lord (1980), requires that the function 

used to transform a score on the equated form to the base form scale must be the inverse of the 

function used to transform a score on the base form to the equated form scale (Kolen & Brennan, 

2004). However, because ability (i.e., θ̂ ) is a vector (i.e., 1 2
ˆ ˆ ˆ ˆ[ , ... ]m  θ ) in the MIRT framework, 

demonstrating equivalence between two ability vectors corresponding to different test forms 

becomes more complex and is also indirect. 

In MIRT, the probabilities of obtaining correct responses to each item are summed to form 

true scores (i.e., ( ) ( )p θ θ ) in the test characteristic surface (TCS) for each combination of 

ability levels (corresponding to each dimension). When two test forms are in the same scale 

metric, the relationship between the location of the ability space and the true score on the test is 

displayed as the cutoff contour in the TCS. Different ability vectors from two different forms 

falling on equivalent contours are considered equivalent and may end up with the same true 

scores.  
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For a particular true score, an infinite number of combinations of ability levels are 

associated with that true score. Thus, the ability vectors and their corresponding true scores are 

no longer symmetric and the symmetry property (Lord, 1980) of equating is violated under 

MIRT; this can make MIRT equating seems like an impossible task. 

One possible solution is to use the number-correct score or true score as the ability 

measure in MIRT. The process of transforming multidimensional ability vectors into 

unidimensional measures through a particular MIRT model is a linear combination procedure. 

This process is called “unidimensionalization” (Zhang, 2012). This linear combination procedure 

devectorizes the vector or multidimensional features in the MIRT framework. More specifically, 

when the number-correct score or scale score is used as the ability measure, the MIRT ability 

vector is unidimensionalized so that the ability measures from different test forms are 

comparable. As a result of this and most importantly, the symmetry property (Lord, 1980) of 

equating for two test forms under MIRT is satisfied, and MIRT equating becomes possible.  

Unidimensional Approximation 

In previous MIRT research (Zhang, 1996; Zhang & Stout, 1999; Zhang & Wang, 1998), 

researchers claimed that any set of item responses adequately modeled by a multidimensional 

IRT model could be closely approximated by a unidimensional IRT model with (1) an estimated 

unidimensional ability composite (  ) and (2) estimated unidimensional item parameters 

(Zhang & Stout, 1999). 

First, a generalized multidimensional compensatory model is defined as: 

1

( ) ( )ij i j j i j j kj k j

k

p H d H a d





 
    

 
T

θ a θ  (1) 
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where “ ),...,,( 21 jdjjj aaaT
a  is the discrimination parameter vector, jdjj aaa ,...,, 21  are 

nonnegative and not all zero, 
jd is an index related to the difficulty parameter, and )(xH j  is a 

link function” (Zhang, 1996, Zhang & Stout, 1999, and Zhang & Wang, 1998). 

The ability composite  of the multidimensional ability vector Θ (i.e., 
1 2[ , , ..., ]m  Θ ) 

is defined as a standardized linear combination ofΘ . That is: 

1

ˆˆ
d

t

j j

j

  


   T
a θ α Θ  (2) 

where 
1 2( , ,..., )t

d  α  is defined as the direction of composite  or the unidimensional 

approximation of the multidimensional ability vector Θ  (i.e., 1 2[ , ,..., ]m  Θ ), and ( ) 1Var  

is constrained for the scale specification. Additionally, the sum of the direction of composite 

is also defined as 1(i.e., 
1

1
d

j

j




 ) . This approximation is true for any generalized 

multidimensional compensatory model. Under the assumption that all terms and scores are 

equally weighted, the formula of the direction of the linear composite can be shown as: 

 
1

2

1 1

ˆ
ˆ

ˆ

N

jkj

k
N

jkk j

a

a





 




 
 (3) 

where N is the total number of items on the test. 

Thus, the item parameters of the UIRT approximation for the MIRT model can be obtained 

as follows:  

UIRT approximation discrimination: 

1

2 2 ˆˆ ˆˆ ˆ(1 )j j ja 


  T
a Σα  (4) 
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UIRT approximation index of difficulty: 

1

2 2ˆ ˆˆ(1 )j j jd d 


   (5) 

UIRT approximation item difficulty is obtained with: 

ˆ
ˆ

ˆ

j

j

j

d
b

a








  (6) 

And variance of the directions for the standardized linear composite   with: 

 
2

2 ˆ ˆ ˆ ˆˆ
j j j j  T T

a Σa a Σα  (7) 

The true score of this unidimensional approximation model for the linear composite (   ) 

is defined asT . This true score (T ) associated with the linear composite (  ) is the sum of the 

probabilities of obtaining correct responses over all items at each composite ability level, and can 

be mathematically expressed as: 

1

( ) k k

k

T


     


 
   

 
  (8) 

This expression preserves the properties of unidimensional IRT true scores in that the function 

( )   is monotonically increasing (e.g., Zhang et al., 1999). 

Note that unidimensional approximation is a procedure of unidimensionalization. It is 

unknown, however, at which step (i.e., IRT estimation, IRT linking, IRT equating) the 

unidimensionalization should best be conducted. Technically, unidimensionalization is possible 

at any of the three equating steps. If unidimensionalization was done in the estimation step, a 

UIRT model would be used to replace the MIRT model so that a set of unidimensional 

parameters would be obtained for later use in test linking and equating. This procedure is 

depicted graphically in Figure 2. 
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Figure 2. Unidimensionalization at IRT Estimation stage 

If the unidimensionalization was conducted in the linking step, the MIRT model would 

first be estimated and then a unidimensional approximation of MIRT (Zhang, 1996; Zhang & 

Stout, 1999; Zhang & Wang, 1998) would be conducted so that a UIRT linking and UIRT 

equating could be applied later. This procedure is depicted graphically in Figure 3.  

 

Figure 3. Unidimensionalization before IRT linking 

If the unidimensionalization was conducted in the equating step through the compound 

binomial function from observed score equating method, the multidimensional estimates would 

be unidimensionalized in the final step. This procedure is depicted graphically in Figure 4.  

 

Figure 4. Unidimensionalization at MIRT Equating stage 
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Finally, the unidimensional approximation (Zhang, 1996; Zhang & Stout, 1999; Zhang & 

Wang, 1998) could also be used as the unidimensionalization procedure for the equating in the 

final step; this is depicted graphically in Figure 5.  

 

Figure 5. Unidimensionalization before Test Equating stage  

MIRT Equating Methods 

Several procedures have been developed within the MIRT framework to conduct MIRT 

equating (Brossman, 2010). These MIRT equating procedures are full MIRT observed score 

equating (MOSE), unidimensional approximation of MIRT true score equating (ATSE), and 

unidimensional approximation of MIRT observed score equating (AOSE). The ATSE procedure 

and the AOSE procedure both apply the unidimensional approximation algorithm (Zhang & 

Stout, 1999) as their foundation. 

Full MIRT Observed Score Equating (MOSE) 

The full MIRT observed score equating method (MOSE) is a straightforward extension of 

UIRT observed score equating. The distribution of observed number-correct scores for 

examinees of a given ability combination is produced by the compound binomial distribution 

through a recursion formula (Lord & Wingersky, 1984). The conditional observed score 

distributions (i.e., ( | )f x θ ) are determined at each combination of ability levels (i.e., the 

combination of each set of grid points at θ ) in the entire ability space (Kolen & Wang, 2007), 

where θ  is the ability combination vector (i.e., 1 2[ , ,..., ]m  θ ). In the recursion formula, the 
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single ability scalar for UIRT is replaced by a vector of the combination of ability levels as 

follows: 

1

1 1

1

( | ) ( | )(1 ) 0

( | )(1 ) ( | ) 0

( | )

r i r i ir

r i ir r i ir

r i ir

f x f x p x

f x p f x p x r

f x p x r



 



  

    

 

θ θ

θ θ

θ

 (9) 

Next, the conditional observed score distributions (i.e., ( | )r if x θ ) are multiplied by the 

ability density ( ( )  ) so that joint distributions of the observed scores are obtained. Once the 

conditional observed score distributions are determined, they are then multiplied by the 

multivariate ability density ( ( ) θ ) to obtain joint distributions of observed scores for the test 

forms. Finally, the observed marginal distribution ( ( )f x ) is determined for each form by either 

multivariate-accumulation or multiple-integration over all joint distributions at each level of 

ability combination on the ability space (i.e.,θ ). The mathematical expression is displayed as: 

1 2

( ) ... ( | ) ( )
m

f x f x   θ θ  (10) 

or 

1 2

( ) ... ( | ) ( )
m

f x f x d    θ θ θ  (11) 

where m is defined as the number of dimensions. After these transformations, the traditional 

equipercentile method is applied to equate both test forms. 

Note that the multivariate-accumulation or multiple-integration for obtaining the marginal 

distribution of observed scores in the final step provides the undimensionalization for the MIRT 

equating. 
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Unidimensional Approximation of MIRT True Score Equating (ATSE)  

After the unidimensional approximation, the UIRT true score equating procedure is 

utilized to equate composite true scores (T ) on both multidimensional test forms. The true score 

from the base form ( )B    and the true score from the equated form ( )E   are considered to be 

equivalent for a given 
i . Thus,  

1( ) ( )B Bi B Eiirt       (12) 

Throughout the iterative procedure (i.e., Newton-Raphson method), the function of the
i , 

is minimized: 

:

( ) ( | , , )i A ij i j j j

j A

func p a b c         (13) 

Finally, using the IRT definition of true score, the composite true score on the base form

( )B    associated with the composite true score on the equated form ( )E    can be computed 

as: 

:

( | , , )B ij i j j j

j B

p a b c      (14) 

Unidimensional Approximation of MIRT Observed Score Equating (AOSE)  

The procedure for the unidimensional approximation of MIRT observed score equating is 

the same as for UIRT observed score equating. After the unidimensional approximation, the 

conditional distributions for the unidimensional ability composite ( | )f x   is determined at each 

composite ability level (  ) through the compound binomial recursion formula (Lord & 

Wingersky, 1984). Then, the marginal distribution for each observed score is computed by 

summing or integrating the product of each form‟s conditional distribution multiplied by the 
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estimated unidimensional ability distribution in the population of examinees across the estimated 

unidimensional ability space, shown as: 

( ) ( | ) ( )i if x f x


 


    
(15) 

or 

( ) ( | ) ( )i if x f x d



  



      (16) 

Finally, the conventional equipercentile procedure is applied to equate the test scores for both 

forms. 

Purpose 

Although three MIRT equating procedures were recently developed by Brossman (2010), 

no simulation studies have been conducted to determine how these procedures perform under a 

variety of settings. Therefore, the performance of MIRT equating procedures under the NEAT 

design requires further investigation. In this study, we examine the performance of MIRT 

equating procedures under the NEAT design and explore how different MIRT linking methods 

interact with these equating procedures to impact equating results under various testing 

conditions. Five MIRT linking methods (i.e., the direct method, the Test Characteristic Function 

method or TCF, the Item Characteristic Function method or ICF, the Min‟s method or M, and the 

non-orthogonal Procrustes method or NOP) and three MIRT equating procedures (i.e., MOSE, 

ATSE, and AOSE) are examined.  

Method 

For this study, the compensatory two-parameter two-dimensional logistical model (M2PL) 

was selected as the MIRT model. The computer program TESTFACT (Bock, Gibbons, Schilling, 

Muraki, Wilson, & Wood, 2003) was used for MIRT estimation.  
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Linking and equating procedures were conducted through the statistical language R 2.14 

(R Development Core Team, 2007). Five MIRT linking methods were investigated: the OD 

method, TCF method, and ICF method from Oshima et al. (2000); the M method from Min 

(2003); and the NOP method from Reckase and Martineau (2004). Three MIRT equating 

procedures proposed by Brossman (2010) were also examined: the MOSE method, the ATSE 

method, and the AOSE method. 

Data 

The item response data were generated using the statistical language R 2.14 (R 

Development Core Team, 2007).  The design used for data generation was a two-factor, 

completely crossed design with 4 (ability distributions)   2 (test structures) for a total of 8 data 

generation conditions. Response data were replicated 200 times from a set of population item 

parameters (40 items) and the sample size for each group were set to be equal to 2,000 for each 

condition.  

In all conditions, the ability dimensions were uncorrelated in the base group. Four 

conditions were created by varying the means, variances, and correlations between the ability 

dimensions for the equated groups: (1) No difference in the base and scaled groups (the null 

condition), (2) differences in θ  variances, (3) differences inθ  means, and (4) differences in θ

correlation. The details of the population design are shown in Appendix Table A-1.   

The length of total test was set as 40, and 20 of those items (i.e., 50% of the total items) 

were used as the common/anchor test section. Approximate simple structure (APSS) and 

complex structure (CS) were applied in this study, and the approximate simple structure and 

complex structure item parameters for the base form unique item section, the equated form 
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unique item section, and the anchor item section are presented in Appendix Table A-2, Table A-

3, Table A-4, Table A-5, and Table A-6, respectively. 

Synthetic Population Weights and Criterion Equating Method  

Synthetic population weights for population 1 and 2 were used to define the target 

population, and were set as 5.1 w  and 5.2 w . A very large sample (e.g., 200,000) was treated as 

a population (Harris & Crouse, 1993), and sample groups of examinees were drawn from that 

population and used to evaluate the different equating methods by comparing the results. 

The frequency estimation method for the NEAT design was used as a criterion equating 

function for comparing the MIRT equating procedures, since this method only employs total test 

scores and the assumptions associated with this procedure were not expected to be violated in 

this study. 

Evaluation Criteria 

According to previous equating literature (e.g., Harris & Crouse, 1993; Zeng & Kolen, 

1995), the evaluation criteria for equating results include: Standard Error of Equating conditional 

on scores ( SEE ), equating bias (Livingston, 1993), and Root Mean Square Deviation ( RMSD ) 

for each score point. Weighted average bias ( wBias ) and weighted average Root Mean Square 

Deviation ( wARMSD ) for the entire test form were used as criteria to evaluate the equating 

methods in this study. Due to limitations of space, only wBias  and wARMSD  were the only 

evaluation criteria reported for this study. 

Equating bias  

Equating bias is defined as the mean difference between an equating method and criterion 

equating function (i.e., Frequency Estimation method) over N replications. The bias at each raw 

score point ix  is defined as: 
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 

N

xexe

Bias

N

k

ibaseibase

i

k




 1

)()(ˆ

 
(17) 

where )( ibase xe indicates the raw score equivalent calculated from the criterion equating function. 

Root mean square deviation ( RMSD ) 

The Root Mean Square Deviation ( RMSD ) is a measure of the overall equating accuracy. 

It is defined as: 

 



N

k

ibaseibasei xexe
N

RMSD
k

1

2
)()(ˆ

1
 (18) 

where ˆ ( )
kbasee x  denotes the raw score equivalent calculated from one equating procedure in 

replication k  and )( ibase xe indicates the raw score equivalent calculated from the criterion 

equating function.  

Weighted average equating bias ( wBias ) 

Weighted Average Equating Bias ( wBias ) is used to evaluate the systematic error in 

equating for each equating procedure as compared to the criterion equating function at the test 

level. The weighted average equating bias ( wBias ) for over all available score points was 

computed as: 

   i

x

ibasew xPxeBiasBias 



39

1

)(ˆ  (19) 

Weighted average root mean square deviation ( wARMSD ) 

Weighted Average Root Mean Square Deviation ( wARMSD ) is used to evaluate the 

discrepancy between each equating procedure and the criterion equating function at the test level. 
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The weighted average root mean square deviation ( wARMSD ) for over all available score points 

was computed as: 

  )()(ˆ
39

1

i

x

ibasew xPxeRMSDARMSD 


  (20) 

where )( ixP is the proportion of examinees from the target population who have an observed 

score of ix on the equated form. 

ANOVA Analysis 

Because five MIRT linking methods and three MIRT equating methods were applied to the 

same response patterns, a repeated ANOVA model was used to detect the effects of simulation 

conditions (between-factors), linking methods (within-factors), and equating methods (within-

factors) on the weighted average root mean square deviation ( wARMSD ) and weighted average 

bias ( wBias ) for each iteration. 

Two summary statistics were examined to provide detailed patterns of errors associated 

with MIRT linking, equating, group distribution difference and test structure. The proportion of 

variance effect size of partial
2  was reported and interpreted in this study. 

Results 

In the first section, the summary of ANOVA analysis results (i.e., 
2 ) for weighted root 

mean square deviation ( wARMSD ) and weighted bias ( wBias ) for the entire test are presented. In 

the second section, the results of comparisons for linking method and group distribution 

interaction, and the results of comparisons for equating method and group distribution interaction 

are presented. 
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The proportion of variance effect size of ω
2 

The results of ANOVA tests for all four factors are presented in Table A-7. The proportion 

of variance effect sizes of 
2 for both weighted average bias and weighted average RMSD 

indicate that the effects of both linking and equating results were most dependent upon group 

distribution differences. The largest effect size was the interaction of linking method with group 

distribution factor, with an effect size of partial
2  equal to .88045 for wBias and .94122 for

wARMSD , respectively. The second largest effect size was the interaction of equating method 

with group distribution factor, with an effect size of partial
2  equal to .46236 for wBias and 

.58711 for wARMSD , respectively. Test structure and all the interactions that include test 

structure had a very small effect size of total
2 . 

This pattern is made clearer by the results of effect size of partial
2  presented in Table A-

7. That is, the linking method   group distribution interaction accounted for the largest portions 

of wBias  and wARMSD  in the equating results for the entire test. Also, the equating method   

group distribution interaction accounted for the second largest portions of wBias  and wARMSD
 

in the equating results for the entire test. 

In sum, results of the repeated measures ANOVA showed that group distribution 

differences and type of MIRT linking had significant effects on equating results (i.e., linking 

method   group distribution interaction). Test structure and all the interactions including test 

structure had very small effects on equating results. And the soundness of equating results 

depended on various group distribution differences, linking methods, equating methods, and their 

interactions. 
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Comparison for the Linking Method x Group Distribution Interaction 

Since the linking method   group distribution interaction accounted for the largest portions 

of wBias  and wARMSD  in equating results for the entire test, the mean of wBias  and wARMSD  

for the equating results were obtained by averaging the mean results from different test structures 

and MIRT equating methods; this was done in order to directly compare the equating results of 

five MIRT linking methods across different group distribution conditions. These results are 

shown in Table A-8, Table A-9 and Figure 6, Figure 7. 

 

Figure 6. Weighted mean Bias for linking methodsgroup 

In general, the TCF method and the ICF method performed best across all group 

distribution conditions with means equal to  -.4155, -.3799 for wBias  and 2.0080, 1.3811 for

wARMSD , respectively, as compared with the other three linking methods. The OD method and 

the M method had less biased and more stable results than the NOP method in terms of smaller 

means of wBias and wARMSD  on equating results; more specifically, means were equal to -.2896, 

-1.0497 for wBias , and 2.4079, 7.4168 for wARMSD , respectively, for OD and M methods. The 

NOP method performed worst of all and had the largest means of wBias  and wARMSD  (-1.8192 
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and 22.6127), as compared with the other four linking methods. That is, under the NOP method 

the equating results for the entire test had the largest amount of wARMSD  (22.6127), which was 

approximately the same as the total test scale. More specific results follow. 

 

Figure 7. Weighted mean ARMSD for linking methodsgroup 

Under the condition with only group differences in standard deviation (i.e., Group 2), the 

performance pattern across all five linking methods was similar to the general pattern, but the M 

method performed best as compared with the other four linking methods, especially in terms of 

smallest magnitude of mean of wARMSD ; means were equal to .29248 for wBias  and .20884 for

wARMSD . 

Under the condition with group mean differences (i.e., Group 3), the magnitude of means 

of wBias and wARMSD
 
for all five MIRT linking methods drastically increased as compared with 

Group 1 and Group 2.  The results of wBias  for the M method, the OD method, the TCF method, 

the ICF method, and the NOP method under condition 3 were 5.119, -2.3007, -1.8481, -1.6189, 

and -9.0351, respectively. The results of wARMSD  for the M method, the OD method, the TCF 

method, the ICF method, and the NOP method under condition 3 were 28.6865, 7.52435, 
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5.64556, 4.9614, and 87.9546, respectively.The performance pattern across all five linking 

methods was similar to the general pattern but had much larger magnitude of means for wBias

and wARMSD . Under the NOP method, the average results of wARMSD  was 87.9546, which 

means the discrepancy between the average scores of the three MIRT equating procedures and 

the criterion equating function scores was more than double that of the entire test scale. 

Under the condition where correlation exists between group ability dimensions (i.e., Group 

4), the ICF method outperformed the other four linking methods in terms of having the smallest 

mean of wARMSD  (.19166). Generally, the results of wBias  and wARMSD  for equating results 

with all five linking methods under condition 4 were comparatively small, with the means equal 

to .321992 for wBias  and 1.06243 for wARMSD . The performance pattern of all five linking 

methods under correlated ability dimensions was similar to the general pattern across all group 

distribution conditions.  

Comparison for the Equating Method x Group Distribution Interaction 

After the linking method  group distribution interaction, the equating method   group 

distribution interaction accounted for the next largest portions of wBias  and wARMSD  in the 

equating results for the entire test. The means of wBias  and wARMSD  for the equating results 

were obtained by averaging the mean results from different test structures and MIRT linking 

methods, for the purpose of directly comparing equating results obtained with the three MIRT 

equating methods across different group distribution conditions. These results are shown in 

Table A-10, Table A-11 and Figure 8, Figure 9.  
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Figure 8. Weighted mean Bias for equating methodsgroup 

Overall, it was found that all three MIRT equating methods performed comparatively well 

when there was no group mean difference, including under the null condition. Generally, the 

ATSE method demonstrated the best equating performance, with means equal to -.5774 for wBias  

and 5.0167 for wARMSD , as compared with the other two equating methods (i.e., MOSE, AOSE) 

across all group distribution conditions. The MOSE method displayed the worst equating 

performance, with means equal to -1.2047 for wBias  and 10.6396 for wARMSD .  

With no group distribution mean differences, the MOSE method performed better than the 

AOSE method in terms of smaller values of the mean of wBias  and wARMSD  for the equating 

results for the entire test (i.e., .23211 for wBias  and .23195 for wARMSD  under the null 

condition). When there was a group distribution mean difference, both the ATSE method and the 

AOSE method outperformed the MOSE method with regard to smaller values of the means of 

wBias  and wARMSD . However, the magnitude of the means for wBias and wARMSD drastically 

increased for all three MIRT equating methods when group mean differences existed. For 

example, under group distribution condition 3, the mean results of all three MIRT equating 
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procedures were -2.23063 for wBias  and 16.3327 for wARMSD , as compared with .36066 for

wBias  and .372772 for wARMSD  under the null condition. More specific results follow. 

 

Figure 9. Weighted mean ARMSD for equating methodsgroup 

When only the group standard deviation varied (i.e., Group 2) or only a correlation existed 

between group ability dimensions (i.e., Group 4), the performance pattern across all three 

equating methods was similar to the general pattern with means equal to -2.23063 for wBias  and 

16.3327 for wARMSD . The ATSE procedure outperformed the other two equating methods with 

the smallest magnitude of mean for wARMSD  (i.e., .27605). 

Under the condition with group mean differences (i.e., Group 3), the values of the means 

of wBias and wARMSD  for all three MIRT equating methods greatly increased, with the means 

equal to -2.2306 for wBias  and 16.3327 for wARMSD , as compared with means of .2989 for wBias  

and .37375 for wARMSD  under conditions without group mean differences (i.e., Group 2). The 

performance pattern across all three equating methods was similar to the general pattern but with 

larger magnitude of means for wBias and wARMSD . 
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Discussion and Conclusion 

Equivalent Score Difference 

In this study, MIRT equating under the NEAT design was compared under eight 

conditions with four different group distributions across two different test structures. From these 

results, some characteristics of MIRT equating with the NEAT design can be identified.  

First of all, test structure and all the interactions including test structure had a very small 

effect on equating results. Second, among all three group distribution factors (i.e., group mean, 

correlation and standard deviation), the group mean factor influenced equating results the most. 

The group correlation factor and the group standard deviation factor had a similar level of effect 

on the equating results, but their impact was not as large as the group mean factor. Third, the 

interaction of group distribution differences and type of MIRT linking method had a huge effect 

on the equating results. Fourth, the interaction of group distribution differences and type of 

MIRT equating procedure also had a large effect on the equating results. 

All three MIRT equating procedures performed best under the TCF and the ICF MIRT 

linking methods when there were significant group distribution differences. When group 

distribution differences existed, equating results had smaller discrepancies under the OD and the 

M methods than they did under the NOP method. The equating procedures under the NOP 

method had the lowest robustness when there were group distribution shape differences. This 

was consistent with results found in previous studies (Simon, 2008). Moreover, MIRT equating 

procedures demonstrated the worst performance under the NOP linking method with larger score 

differences across score scale. 

In this study, some interesting results were found by comparing MIRT equating procedures 

with the criterion equating function within each population condition through equivalent score 

differences. Results of the comparison among the three MIRT equating procedures were 
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obtained by averaging equating results from each MIRT equating procedure across all linking 

methods. 

First, the ATSE procedure demonstrated, overall, the best equating performance as 

compared with the other two equating procedures (i.e., MOSE and AOSE) across all group 

distribution conditions. Second, all three MIRT equating procedures performed comparatively 

well when no group mean difference existed, especially under the null condition. Third, the 

MOSE procedure performed better than the AOSE procedure in terms of the equivalent score 

difference across score scale when no group distribution mean differences existed. Fourth, both 

the ATSE procedure and the AOSE procedure outperformed the MOSE procedure when there 

were group distribution mean differences. However, when group mean differences existed, the 

equating results for all three MIRT equating procedures had larger discrepancies than those 

under conditions with no group mean differences. 

Fifth, the ATSE procedure performed better than the other two equating procedures when 

only the group standard deviation varied or only a correlation existed between group ability 

dimensions. When group means differed, the discrepancies between equivalent scores from all 

three MIRT equating procedures and equivalent scores from the criterion equating function 

greatly increased. But the ATSE procedure also outperformed the other two equating procedures 

in terms of smaller equivalent score differences.  

Because MIRT observed score equating and MIRT true score equating are defined 

differently, the observed score and the true score equating procedures are not expected to 

perform similarly even under ideal conditions. When two groups are non-equivalent, the ATSE 

procedure had, overall, the best equating performance as compared with frequency estimation 

equating results in this study. This was true even though the frequency estimation equating 
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procedure is an observed score procedure. It is currently unknown as to why the ATSE procedure 

performed best among all three MIRT equating procedures, even when compared with the 

observed score criterion equating function. This result might have been caused by group ability 

non-equivalence. More specifically, since the MIRT true score procedure is sample invariant and 

MIRT observed score procedures may be influenced by sample variation, it is possible that the 

MIRT true score procedure outperforms the MIRT observed score equating procedures as group 

non-equivalence exists, such as with the NEAT design. 

Possible Effects of Equivalent Score Difference  

Effects from IRT Estimation 

The first possible effect that could influence MIRT equating results is the MIRT estimation 

process itself. In this study, item calibration was done by using TESTFACT to obtain MIRT 

parameter estimates. TESTFACT provides two types of rotation solutions in its IRT estimation 

process: the orthogonal „VARIMAX‟ rotation solution and the non-orthogonal „PROMAX‟ 

rotation solution. According to previous literature (i.e., Li & Lissitz, 2000), the „PROMAX‟ 

rotation solution is recommended because the calibrated item parameter estimates can be rotated 

obliquely for better interpretation. For that reason, the „PROMAX‟ solution was selected for use 

in this study. 

However, using the „PROMAX‟ rotation solution in the MIRT estimation process might be 

controversial. On one hand, using „PROMAX‟ may provide better-interpreted item parameter 

estimates (Li & Lissitz, 2000); on the other hand, under such oblique rotation the overall 

discrimination power for each item (which is related to the geometric length of the item as 

represented in multidimensional space) may change, since each item is rotated obliquely. 

Furthermore, the MIRT difficulty parameter ( d ) may vary accordingly. That is, it is possible 

that the direction of best measurement for the entire test may change by using the „PROMAX‟ 
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rotation solution. Thus, using the „PROMAX‟ rotation solution in the MIRT estimation process 

may affect the MIRT linking process. 

Since most constructs (and dimensions within a construct) are correlated in education and 

psychology, correlated ability dimension conditions are included in this study. Because of the 

characteristics of the IRT estimation in TESTFACT, correlations among item scores are 

accounted for solely by the a  parameters (Li, 1997; Reckase, 1997; Wei, 2008). However, by 

using the „PROMAX‟ rotation solution in the MIRT estimation process, correlations among the 

item scores may not be solely accounted for by the a  parameters. This may also affect the MIRT 

linking process. It is currently unknown which rotation solution will have a greater effect on 

MIRT equating procedure performance. Furthermore, the amount of error due to item parameter 

estimates from the MIRT estimation was not examined separately from equating errors in this 

study. Thus, further investigation into how MIRT estimation may affect equating results is 

warranted. 

Effects from IRT Linking Methods 

The process of MIRT linking may also affect MIRT equating results. As mentioned 

previously, different linking methods apply different types of rotation, dilation, and translation 

approaches. Also, different linking methods utilize different types of optimization approaches in 

the MIRT linking process. Therefore, applying different MIRT linking methods in MIRT 

equating procedures may result in different equating performance, even within the same MIRT 

equating procedure. 

In the TCF, the ICF, and the OD linking methods, the rotation matrix A and translation 

vectorβ  are optimized simultaneously through the linking process. In the M linking method, only 

the rotation matrix A is optimized by minimizing the trace function for the product of the least 
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square difference ( 1E ) and its transpose ( '

1E ). In the NOP linking method, no optimization 

process is applied and the MIRT linking process is done solely through the non-orthogonal 

Procrustes procedure. Thus, the number of optimization processes included in the linking 

methods may be an underlying reason for differences in equating performance. Accordingly, it is 

possible that because both the rotation matrix A and translation vectorβ  are optimized in the 

MIRT linking processes, that explains why the MIRT equating procedures under the TCF, the 

ICF, and the OD linking methods demonstrate better equating performance as compared with the 

M and NOP linking methods. It is also possible that because no optimization process is applied 

in the NOP process, the MIRT equating procedures under the NOP linking method demonstrate 

the worst equating performance among all MIRT linking methods. In this study, the amount of 

error due to MIRT linking was not examined separately from equating errors. Therefore, further 

investigation into the impact that different MIRT linking methods may have on equating results 

is suggested. 

Limitation and Future Research Direction 

This study is the first simulation study to evaluate the performance of different MIRT 

equating procedures. Specifically, this study explores the performance of multiple MIRT 

equating procedures under the NEAT design. It should be noted that we could have considered 

more comprehensive factors. For example, more sophisticated combinations of different 

populations could have been included. Since it was impossible to include all these factors, only a 

few of them were considered; thus, this study is limited by the restricted number of conditions 

considered. 

Also, the IRT software used in this study was TESTFACT. As mentioned previously, 

TESTFACT only provides limited options for rotation solutions in its IRT estimation process. 
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Possible problems may have been created by the selection of rotation type in the process of 

MIRT item calibration. Future research should consider additional choices for rotation in the 

MIRT estimation process, from different MIRT software. Moreover, when there are high 

correlations between ability dimensions and non-equivalent groups, the choice of a rotation 

solution for MIRT item calibration becomes much more complex. Better estimation procedures 

with correlated ability dimensions and non-equivalent groups are needed. Thus, the possibility of 

comparing multiple programs for MIRT (Mplus, BMIRT, and IRTPRO) needs to be considered 

in future studies. 

Mean ability differences between groups had the greatest influence on the equating results 

for all three equating procedures across all linking methods. This is likely due to the violation of 

the population invariance requirement for equating. Also, it may have been impacted by the fact 

that no optimization is involved in the translation in any of the linking methods, such that the 

adjustment process in MIRT linking may not work effectively. 

Another limitation may be that the rotation in the MIRT linking process used in this study 

is controversial. On one hand, only orthogonal rotation in MIRT linking is recommended in the 

literature (Brossman, 2010; Min, 2003). In Brossman‟s study, the author stated that although the 

discrimination parameters changed through the orthogonal rotation, the overall discrimination 

power and the MIRT difficulty parameter for each item remained the same. In Min‟s study (Min, 

2003), concerns about using oblique rotations in the MIRT linking process were addressed. He 

believed that the meaning of the reference axes could change after oblique rotation because the 

angles among axes are changed when finding the optimal rotation, while the orthogonal rotation 

maintains the initial structure of a reference system. Neither Brossman nor Min recommend 

using oblique rotation in MIRT linking process, something that was proposed by Oshima, Davey 
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and Lee (2000). On the other hand and based on the MIRT results obtained from this study, 

MIRT equating procedures performed under the oblique rotated linking methods (TCF, ICF, and 

OD) demonstrated better equating performance than those performed under the orthogonal 

rotated linking methods (M). It is not clear whether researchers need to maintain item vector 

structure through an orthogonal rotation, nor is it clear to what extent the oblique rotation used in 

most of the linking methods changes the vector structures such that the performance of the MIRT 

equating procedures is influenced. Therefore, further investigation into what types of rotation 

used in the MIRT linking process for MIRT equating is needed. 

Lastly, it is worth noting that although test forms to be equated are typically designed to 

cover the same content domain, the multidimensional feature of some tests implies that different 

total scores across the entire score scale might carry different weights from different dimensions 

for each population. This may be true even though a unidimensionalization procedure is 

conducted in the process to obtain total scores. Due to limits of time and space, this issue was not 

discussed in this study. Therefore, further research into this issue in MIRT equating is 

recommended. 
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APPENDIX A 

TABLES 

Table A-1. Ability distributions for examinee groups 
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Table A-2. Test structure of base form unique test section (approximate simple structure) 

Item 1a   2a   d   MDISC  MDIFF   1  2   

1 0.200 0.014 0.400 0.200 -2.000 4 86 

2 0.390 0.090 0.600 0.400 -1.500 13 77 

3 0.589 0.114 -0.600 0.600 1.000 11 79 

4 0.796 0.084 0.400 0.800 -0.500 6 84 

5 0.993 0.122 0.000 1.000 0.000 7 83 

6 1.169 0.270 0.000 1.200 0.000 13 77 

7 1.374 0.267 1.400 1.400 -1.000 11 79 

8 1.599 0.056 -0.800 1.600 0.500 2 88 

9 1.799 0.063 -2.700 1.800 1.500 2 88 

10 1.992 0.174 -4.000 2.000 2.000 5 85 

11 0.048 0.194 0.400 0.200 -2.000 76 14 

12 0.000 0.400 0.600 0.400 -1.500 90 0 

13 0.000 0.600 -0.600 0.600 1.000 90 0 

14 0.180 0.779 0.400 0.800 -0.500 77 13 

15 0.174 0.985 0.000 1.000 0.000 80 10 

16 0.249 1.174 0.000 1.200 0.000 78 12 

17 0.122 1.395 1.400 1.400 -1.000 85 5 

18 0.195 1.588 -0.800 1.600 0.500 83 7 

19 0.126 1.796 -2.700 1.800 1.500 86 4 

20 0.209 1.989 -4.000 2.000 2.000 84 6 
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Table A-3. Test structure of base form unique test section (complex structure) 

Item 1a   2a   d   MDISC  MDIFF   1  2   

1 0.194 0.048 0.400 0.200 -2.000 14 76 

2 0.390 0.090 0.600 0.400 -1.500 13 77 

3 0.593 0.094 -0.600 0.600 1.000 9 81 

4 0.790 0.125 0.400 0.800 -0.500 9 81 

5 0.974 0.225 0.000 1.000 0.000 13 77 

6 0.946 0.739 0.000 1.200 0.000 38 52 

7 1.147 0.803 1.400 1.400 -1.000 35 55 

8 1.226 1.028 -0.800 1.600 0.500 40 50 

9 1.474 1.032 -2.700 1.800 1.500 35 55 

10 1.638 1.147 -4.000 2.000 2.000 35 55 

11 0.100 0.173 0.400 0.200 -2.000 60 30 

12 0.235 0.324 0.600 0.400 -1.500 54 36 

13 0.401 0.446 -0.600 0.600 1.000 48 42 

14 0.503 0.622 0.400 0.800 -0.500 51 39 

15 0.500 0.866 0.000 1.000 0.000 60 30 

16 0.084 1.197 0.000 1.200 0.000 86 4 

17 0.073 1.398 1.400 1.400 -1.000 87 3 

18 0.139 1.594 -0.800 1.600 0.500 85 5 

19 0.374 1.761 -2.700 1.800 1.500 78 12 

20 0.382 1.963 -4.000 2.000 2.000 79 11 
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Table A-4. Test structure of equated form unique item section (approximate simple structure) 

Item 1a   2a   d   MDISC  MDIFF   1  2   

1 0.194 0.048 0.400 0.200 -2.000 14 76 

2 0.398 0.035 0.600 0.400 -1.500 5 85 

3 0.599 0.031 -0.600 0.600 1.000 3 87 

4 0.779 0.180 0.400 0.800 -0.500 13 77 

5 0.996 0.087 0.000 1.000 0.000 5 85 

6 1.193 0.125 0.000 1.200 0.000 6 84 

7 1.392 0.146 1.400 1.400 -1.000 6 84 

8 1.594 0.139 -0.800 1.600 0.500 5 85 

9 1.796 0.126 -2.700 1.800 1.500 4 86 

10 1.975 0.313 -4.000 2.000 2.000 9 81 

11 0.017 0.199 0.400 0.200 -2.000 85 5 

12 0.069 0.394 0.600 0.400 -1.500 80 10 

13 0.063 0.597 -0.600 0.600 1.000 84 6 

14 0.042 0.799 0.400 0.800 -0.500 87 3 

15 0.139 0.990 0.000 1.000 0.000 82 8 

16 0.000 1.200 0.000 1.200 0.000 90 0 

17 0.049 1.399 1.400 1.400 -1.000 88 2 

18 0.387 1.552 -0.800 1.600 0.500 76 14 

19 0.188 1.790 -2.700 1.800 1.500 84 6 

20 0.347 1.970 -4.000 2.000 2.000 80 10 
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Table A-5. Test structure of equated form unique item section (complex structure) 

Item 1a   2a   d   MDISC  MDIFF   1  2   

1 0.196 0.042 0.400 0.200 -2.000 12 78 

2 0.386 0.104 0.600 0.400 -1.500 15 75 

3 0.597 0.063 -0.600 0.600 1.000 6 84 

4 0.796 0.084 0.400 0.800 -0.500 6 84 

5 0.993 0.122 0.000 1.000 0.000 7 83 

6 0.983 0.688 0.000 1.200 0.000 35 55 

7 1.118 0.843 1.400 1.400 -1.000 37 53 

8 1.278 0.963 -0.800 1.600 0.500 37 53 

9 1.510 0.980 -2.700 1.800 1.500 33 57 

10 1.509 1.312 -4.000 2.000 2.000 41 49 

11 0.134 0.149 0.400 0.200 -2.000 48 42 

12 0.268 0.297 0.600 0.400 -1.500 48 42 

13 0.300 0.520 -0.600 0.600 1.000 60 30 

14 0.424 0.678 0.400 0.800 -0.500 58 32 

15 0.643 0.766 0.000 1.000 0.000 50 40 

16 0.146 1.191 0.000 1.200 0.000 83 7 

17 0.219 1.383 1.400 1.400 -1.000 81 9 

18 0.195 1.588 -0.800 1.600 0.500 83 7 

19 0.435 1.747 -2.700 1.800 1.500 76 14 

20 0.313 1.975 -4.000 2.000 2.000 81 9 
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Table A-6. Test structure of anchor item section (approximate simple structure) 

Item 1a   2a   d   MDISC  MDIFF   1  2   

1 0.198 0.028 0.400 0.200 -2.000 8 82 

2 0.397 0.049 0.600 0.400 -1.500 7 83 

3 0.600 0.010 -0.600 0.600 1.000 1 89 

4 0.785 0.153 0.400 0.800 -0.500 11 79 

5 0.996 0.087 0.000 1.000 0.000 5 85 

6 1.169 0.270 0.000 1.200 0.000 13 77 

7 1.369 0.291 1.400 1.400 -1.000 12 78 

8 1.576 0.278 -0.800 1.600 0.500 10 80 

9 1.747 0.435 -2.700 1.800 1.500 14 76 

10 1.941 0.484 -4.000 2.000 2.000 14 76 

11 0.024 0.199 0.400 0.200 -2.000 83 7 

12 0.056 0.396 0.600 0.400 -1.500 82 8 

13 0.135 0.585 -0.600 0.600 1.000 77 13 

14 0.097 0.794 0.400 0.800 -0.500 83 7 

15 0.225 0.974 0.000 1.000 0.000 77 13 

16 0.249 1.174 0.000 1.200 0.000 78 12 

17 0.315 1.364 1.400 1.400 -1.000 77 13 

18 0.195 1.588 -0.800 1.600 0.500 83 7 

19 0.343 1.767 -2.700 1.800 1.500 79 11 

20 0.209 1.989 -4.000 2.000 2.000 84 6 
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Table A-7. Repeated measure analysis results for weighted Bias and ARMSD 

Statistic Factors Source Partial 
2  

wBias  Between test_str 0.02067 

 

Between group 0.92557 

 

Between test_str*group                0.00458 

    

 

Within link 0.84970 

 

Within link*test_str                 0.00641 

 

Within link*group                    0.88045 

 

Within link*test_str*group           0.06019 

 

Within equat 0.47878 

 

Within equat*test_str                0.01469 

 

Within equat*group                   0.46236 

 

Within equat*test_str*group              0.00459 

 

Within link*equat                    0.00185 

 

Within link*equat*test_str 0.00342 

 

Within link*equat*group              0.00873 

  Within link*equat*test_str*group     0.00429 

    

wARMSD  Between test_str 0.00670 

 

Between group 0.91944 

 

Between test_str*group                0.02128 

    

 

Within link 0.94089 

 

Within link*test_str                 0.03362 

 

Within link*group                    0.94122 

 

Within link*test_str*group           0.15599 

 

Within equat 0.57653 

 

Within equat*test_str                0.01727 

 

Within equat*group                   0.58711 

 

Within equat*test_str*group              0.02497 

 

Within link*equat                    0.38335 

 

Within link*equat*test_str 0.03872 

 

Within link*equat*group              0.40483 

  Within link*equat*test_str*group     0.04714 

Note: link- MIRT linking methods 

          equate - MIRT equating methods  

          Group - group distribution shape 

          test_str - test structure 
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Table A-8. Weighted mean Bias for linking methodsgroup 

Group Distribution  Linking Methods 

  Mean SD Cor Min OD TCF ICF NOP Mean 

Group 1 0.0 1.0 0.0 0.32926 0.24153 0.09908 0.08588 0.58308 0.26777 

Group 2 0.0 0.8 0.0 0.29248 0.25659 0.10186 0.07712 0.42949 0.23151 

Group 3 0.5 1.0 0.0 -5.1191 -2.3007 -1.8481 -1.6189 -9.0351 -3.9844 

Group 4 0.0 1.0 0.5 0.29875 0.64432 -0.015 -0.0637 0.74563 0.32199 

Mean       -1.0497 -0.2896 -0.4155 -0.3799 -1.8192 -0.7908 

Note: SD- Standard Deviation, Cor-Correlation, Min- Min‟s method, OD- Oshima, Davey, and 

Lee‟s Direct method, TCF- Oshima, Davey, and Lee‟s Test Characteristic Function method, ICF- 

Oshima, Davey, and Lee‟s Item Characteristic Function method, NOP- Reckase & Martineau‟s 

Method 

 

Table A-9. Weighted mean ARMSD for linking methodsgroup 

Group Distribution  Linking Methods 

  Mean SD Cor Min OD TCF ICF NOP Mean 

Group 1 0.0 1.0 0.0 0.23089 0.28789 0.11543 0.11071 0.69485 0.28795 

Group 2 0.0 0.8 0.0 0.20884 0.48575 0.26935 0.26063 0.55671 0.35626 

Group 3 0.5 1.0 0.0 28.6865 7.52435 5.64556 4.9614 87.9546 26.9545 

Group 4 0.0 1.0 0.5 0.54088 1.33343 2.00157 0.19166 1.24462 1.06243 

Mean       7.4168 2.4079 2.0080 1.3811 22.6127 7.1653 

Note: SD- Standard Deviation, Cor-Correlation, Min- Min‟s method, OD- Oshima, Davey, and 

Lee‟s Direct method, TCF- Oshima, Davey, and Lee‟s Test Characteristic Function method, ICF- 

Oshima, Davey, and Lee‟s Item Characteristic Function method, NOP- Reckase & Martineau‟s 

Method 
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Table A-10. Weighted mean Bias for equating methodsgroup 

Group Distribution    Equating Methods 

  Mean SD Cor MOSE AOSE ATSE Mean 

Group 1 0.0 1.0 0.0 0.23211 0.33764 0.23354 0.36066 

Group 2 0.0 0.8 0.0 0.24126 0.25349 0.19976 0.2989 

Group 3 0.5 1.0 0.0 -5.5469 -3.3541 -3.0522 -2.2306 

Group 4 0.0 1.0 0.5 0.25488 0.40193 0.30917 0.4932 

Mean       -1.2047 -0.5903 -0.5774 -0.2695 

Note: SD- Standard Deviation, Cor-Correlation, MOSE- Full Information MIRT Observed Score 

Equating, AOSE- Unidimensional Approximation of MIRT Observed Score Equating, ATSE- 

Unidimensional Approximation of MIRT True Score Equating 

 

Table A-11. Weighted mean ARMSD for equating methodsgroup 

Group Distribution    Equating Methods 

  Mean SD Cor MOSE AOSE ATSE Mean 

Group 1 0.0 1.0 0.0 0.23195 0.39008 0.24183 0.37277 

Group 2 0.0 0.8 0.0 0.34226 0.45045 0.27605 0.37375 

Group 3 0.5 1.0 0.0 40.9469 21.1754 18.7411 16.3327 

Group 4 0.0 1.0 0.5 1.0374 1.34202 0.80787 0.93746 

Mean       10.6396 5.8395 5.0167 4.5042 

Note: SD- Standard Deviation, Cor-Correlation, MOSE- Full Information MIRT Observed Score 

Equating, AOSE- Unidimensional Approximation of MIRT Observed Score Equating, ATSE- 

Unidimensional Approximation of MIRT True Score Equating 

 

 


